
Deep Computing

© 2007 IBM Corporation

Rajiv Bendale, Kirk E. Jordan, Jerrold Heyman, Carlos P Sosa,
Robert E. Walkup

IBM, USA
bendale@us.ibm.com
kjordan@us.ibm.com
jheyman@us.ibm.com
cpsosa@us.ibm.com
walkup@us.ibm.com

BG/L → BG/P Transition: An Applications
Perspective

© 2007 IBM Corporation2 3/10/08

Blue Gene Workshops

Is There a Need to Transition My Application?

Blue Gene/P
PPC 450 @ 850MHz
Scalable to 3+ PF

Blue Gene/L
PPC 440 @ 700MHz
Scalable to 596+ TF

Yes!

© 2007 IBM Corporation3 3/10/08

Blue Gene Workshops

Where Are the Differences?

Hardware

Software

Compiling and linking

Running

Environment Application

© 2007 IBM Corporation4 3/10/08

Blue Gene Workshops

Selected Hardware Features

Feature BG/L BG/P

Cores per node

Core clock speed

Physical memory per node

Peak performance, per node

2 4

700 MHz 850 MHz

512 MB – 1 GB 2 GB

5.6 GFlop/Sec 13.6 GFlop/Sec

© 2007 IBM Corporation5 3/10/08

Blue Gene Workshops

Running Your Application

© 2007 IBM Corporation6 3/10/08

Blue Gene Workshops

Execution Process Modes

 Co-processor (CO) mode

 Virtual node (VN) mode

 Symmetrical
Multiprocessing (SMP)
Node Mode

 Virtual Node Mode (VN)

 Dual Node Mode (DUAL)

BG/L BG/P

© 2007 IBM Corporation7 3/10/08

Blue Gene Workshops

SMP, VN, and DUAL

SMP

VN

DUAL

© 2007 IBM Corporation8 3/10/08

Blue Gene Workshops

Memory Addressing: BG/L → BG/P

CO

VN
heap

bss
data
text

stack

SMP

DUAL

VN

heap

bss
data
text

stack

BG/L

BG/P

© 2007 IBM Corporation9 3/10/08

Blue Gene Workshops

Choosing Execution Mode

 It is application dependent
– Applications based on a hybrid parallel paradigm

(MPI+OpenMP) may benefit from the SMP node mode

– Single threaded applications may consider VN node
mode

– Applications that are CPU bound and do not have large
memory requirements may benefit from VN

© 2007 IBM Corporation10 3/10/08

Blue Gene Workshops

mpirun Developers Differences

BG/L

BG/P

© 2007 IBM Corporation11 3/10/08

Blue Gene Workshops

Invoking mpirun

mpirun [options]

mpirun -partition R00-M0 -mode [] -cwd /tmp a.out

VN

CO

SMP

VN

DUAL

BG/L

BG/P

Support for small partition sizes: 32 and 128

Support for small partition sizes: 16 32 64 and 128

© 2007 IBM Corporation12 3/10/08

Blue Gene Workshops

High Throughput Computing Mode: BG/L → BG/P

© 2007 IBM Corporation13 3/10/08

Blue Gene Workshops

High-Throughput Computing Mode (HTC)

Benefits of High-Throughput Computing (HTC) mode on Blue Gene:

– Blue Gene looks like a traditional "cluster" from an application’s point of view

– Enables a new class of workloads that use many single-node jobs

– Blue Gene supports hybrid application environment, traditional HPC (MPI) and now HTC apps

 Blue Gene
Environment

Serial and Pleasantly
Parallel Apps

Highly Scalable
Msg Passing Apps

Blue Gene Paths Toward aBlue Gene Paths Toward a
General Purpose MachineGeneral Purpose Machine

 *** NEW

HTC HPC (MPI)

© 2007 IBM Corporation14 3/10/08

Blue Gene Workshops

BG/P HTC Features

 Provides a job submit command that is simple, lightweight, and
extremely fast

 Job state is integrated into MMCS, so users know which nodes have
jobs, and which are idle

 Provides stdin/stdout/stderr on a per-job basis
 Enables individual jobs to be signaled or killed
 Maintains a user ID on per-job basis (allows multiple users per partition)
 Navigator shows HTC jobs (active or in history) with job exit status &

runtime stats
 Leverages support on I/O node to use an I/O daemon (CIOD) per

compute node
 Designed for easy integration with job schedulers

© 2007 IBM Corporation15 3/10/08

Blue Gene Workshops

How Does It Work?
 “submit” client:

– Acts as a shadow or proxy for the real job running on the compute node
– Similar to mpirun, but lightweight
– Submit jobs to location or pool
 Pool id concept: scheduler alias for a collection of partitions available to run a

job on (pool id defaults to partition name if not set)
 location: the resource where the job will execute in the form of a processor or

wildcard location

 Example #1 (submit to location): submit -location “R00-M0-N00-J05-C00” -exe
hello_world

 Example #2 (submit to pool): submit -pool BIOLOGY –exe hello_world

 Job scheduler:
– Submit jobs using Condor (“condor_submit”)
– Submit jobs using SIMPLE (“qsub”)

© 2007 IBM Corporation16 3/10/08

Blue Gene Workshops

What Applications Fit the HTC Mode?

 Wide range of applications can run in HTC
mode
– Many applications that run on Blue Gene today are

“embarrassingly (pleasantly) parallel” or “independently parallel”

– They don’t exploit the torus for MPI communication and just want a
large number of small tasks, with a coordinator of results

© 2007 IBM Corporation17 3/10/08

Blue Gene Workshops

Grid.org
 HTC Application Identification

 Solution Statement:
– A high-throughput computing (HTC) application is one in which the same basic calculation must be

performed over many independent input data elements and the results collected. Because each
calculation is independent, it is extremely easy to spread calculations out over multiple cluster nodes.
For this reason, high-throughput applications are sometimes called “embarrassingly parallel.” HTC
applications occur much more frequently than one might think, showing up in areas such as
parameters studies, search applications, data analytics, and what-if calculations.

 Identifying a HTC application:
– There are a number of identifiers you can use to determine if your specific computing problem fits into

the category of a high-throughput application:

– Do you need to run many instances of the same application with different arguments or parameters?

– Do you need to run the same application many times with different input files?

– Do you have an application that can select subsets of the input data and whose results can be
combined by a simple merge process such as concatenating, placing them into a single database, or
adding them together?

If the answer to any of these questions is “yes,” then it is quite likely that you have a HTC application.

© 2007 IBM Corporation18 3/10/08

Blue Gene Workshops

Compiling Your Application

© 2007 IBM Corporation19 3/10/08

Blue Gene Workshops

Compilers Information on BG/P

 XL C/C++ Advanced Edition V9.0 for Blue Gene
– http://www.ibm.com/software/awdtools/xlcpp/library/

 XL Fortran Advanced Edition V11.1 for Blue Gene
– http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

 You can also find these documents in the following directories:
– /opt/ibmcmp/vacpp/bg/9.0/doc (C and C++)
– /opt/ibmcmp/xlf/bg/11.1/doc (Fortran)

 The compilers can be found in the following directories:
– /opt/ibmcmp/vac/bg/9.0/bin
– /opt/ibmcmp/vacpp/bg/9.0/bin
– /opt/ibmcmp/xlf/bg/11.1/bin

© 2007 IBM Corporation20 3/10/08

Blue Gene Workshops

Compiler Wrappers: BG/L → BG/P

 Blue Gene/P release:
– blrts_ is replaced by bg.

– xlf 11.1, vacpp 9.0, and vac 9.0 on the Blue Gene/L
system support both blrts_ and bg

– -qarch=450d/450 is for the Blue Gene/P system

– -qarch=440d/440 is for the Blue Gene/L system

© 2007 IBM Corporation21 3/10/08

Blue Gene Workshops

Compiler Scripts

blrts_xlf,
blrts_xlf90,
blrts_xlf95

blrts_xlc++

blrts_xlc

BG/L BG/P

bgf2003, bgf95, bgxlf2003,
bgxlf90_r, bgxlf_r, bgf77,
bgfort77, bgxlf2003_r, bgxlf95,
bgf90, bgxlf, bgxlf90, bgxlf95_r

Fortran

gxlc++, bgxlc++_r, bgxlC,
bgxlC_r

C++

bgc89, bgc99, bgcc, bgxlc
bgc89_r, bgc99_r bgcc_r,
bgxlc_r

C

Script NameLanguage

© 2007 IBM Corporation22 3/10/08

Blue Gene Workshops

Compiler BG/P Release: New
 Full support for the OpenMP 2.5 standard
 Use of the same infrastructure as the OpenMP that is supported on AIX and

Linux
 Interoperability with MPI

– MPI at outer level, across the Compute Nodes
– OpenMP at the inner level, within a Compute Node

 Autoparallelization based on the same parallel execution framework
– Enablement of autoparallelization as one of the loop optimizations
– Thread-safe version for each compiler: bgxlf_r, bgxlc_r, bgxlC_r, bgcc_r

 The thread-safe compiler version should be used with any threaded,
OpenMP, or SMP application

 Usage of -qsmp and -qthreaded OpenMP and SMP applications
– -qsmp by itself automatically parallelizes loops
– -qsmp=omp automatically parallelizes based on OpenMP directives in the

code.
– -qsmp=omp:noauto -qthreaded should be used when parallelizing codes

manually. It prevents the compiler from trying to automatically parallelize loops

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp

© 2007 IBM Corporation23 3/10/08

Blue Gene Workshops

Shared Memory Parallelism (SMP)

 The SMP features in the XL compilers were
disabled in XLC v8 and XLF 10.1
– mainly because of the lack of coherent L2 on
BG/L

 BG/P supports 4 cores per node and has a
coherent L2 cache

 The compiler can take advantage of the SMP
capabilities of the BG/P in two ways
– Parallelization via user-inserted SMP or OMP
directives

– Automatic loop parallelization

© 2007 IBM Corporation24 3/10/08

Blue Gene Workshops

SMP Selected Options Information

 By default, the runtime will use all available processors
– Maximum of 4 on BG / P
– Do not set the PARTHDS or OMP_NUM_THREADS

variables unless you wish to use fewer than the number
of available processors. [Currently SMP Mode]

© 2007 IBM Corporation25 3/10/08

Blue Gene Workshops

SMP Example: source
#include <omp.h>

long long timebase(void);

int main(argc, argv)

int argc;

char *argv[];

{

 int num_threads;

 long n, i;

 double area, pi, x;

 long long time0, time1;

 double cycles, sec_per_cycle,
factor;

 n = 1000000000;

 area = 0.0;

 time0 = timebase();

#pragma omp parallel for
private(x) reduction(+: area)

 for (i = 0; i < n; i++) {

 x = (i+0.5)/n;

 area += 4.0 / (1.0 +
x*x);

 }

 pi = area / n;

 printf ("Estimate of pi:
%7.5f\n", pi);

 time1 = timebase();

 cycles = time1 - time0;

 factor = 1.0/850000000.0;

 sec_per_cycle = cycles *
factor;

 printf("Total time %lf
\n",sec_per_cycle, "Seconds
\n");

}

© 2007 IBM Corporation26 3/10/08

Blue Gene Workshops

SMP Example: Makefile
BGP_FLOOR = /bgsys/drivers/ppcfloor

BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include

BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -L$(BGP_FLOOR)/runtime/SPI -lmpich.cnk -ldcmfcoll.cnk -
ldcmf.cnk -lrt -lSPI.cna -lpthread

XL = /opt/ibmcmp/vac/bg/9.0/bin/bgxlc_r

EXE = pi_reduction_bgp

OBJ = pi_reduction.o

SRC = pi_reduction.c

FLAGS = -O3 -qsmp=omp:noauto -qthreaded -qarch=450 -qtune=450 -
I$(BGP_FLOOR)/comm/include

FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)

${XL} $(FLAGS) $(BGP_LDIRS) -o $(EXE) $(OBJ) $(BGP_LIBS)

 ${XL} $(FLAGS) -o $(EXE) $(OBJ) timebase.o $(BGP_LIBS)

$(OBJ): $(SRC)

 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:

 rm pi_reduction.o pi_reduction_bgp

© 2007 IBM Corporation27 3/10/08

Blue Gene Workshops

SMP Example: Run script

#!/bin/csh

set MPIRUN="mpirun"

set MPIOPT="-np 1"

set MODE="-mode SMP"

set PARTITION="-partition N06_32_1"

set WDIR="-cwd /bgusr/cpsosa/red/pi/c"

set EXE="-exe /bgusr/cpsosa/red/pi/c/pi_reduction_bgp"

#

$MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=4"

#

echo "That's all folks!!"

BG/P

BG/P

© 2007 IBM Corporation28 3/10/08

Blue Gene Workshops

Parallel Speedup

1.28POWER6 4.7 GHz

2.41POWER6 4.7 GHz

4.78POWER6 4.7 GHz

1.40POWER5 1.9 GHz

2.70POWER5 1.9 GHz

5.22POWER5 1.9 GHz

3.24BG/P

5.09POWER4 1 GHz

6.42BG/P

10.08POWER4 1 GHz

12.80BG/P

1

4

2

20.12POWER4 1 GHz

Elapsed Time in Sec.Threads

© 2007 IBM Corporation29 3/10/08

Blue Gene Workshops

OpenMP vs. Automatic Parallelization
 Compiler automatically detects parallel regions and

inserts OMP directives.
– No user intervention required

– Some user-insert assertions (e.g disjoint) may help the
compiler identify parallelizable loops

 User-inserted OMP directives and auto-parallelization
can co-exist
– The compiler will only auto-parallelize loops that are not

marked by OMP directives

 Automatic parallelization along with -qreport can be
helpful for identifying parallel loop opportunities for an
OpenMP programmer

© 2007 IBM Corporation30 3/10/08

Blue Gene Workshops

SMP / OMP Stack Overflow Checking (-qsmp=stackcheck)

 A new SMP suboption “-qsmp=stackcheck” is introduced
along with the environment variable
XLSMPOPTS="stackcheck[=n]" for stack overflow
checking in SMP/OMP codes.
–where "n" is the stack overflow warning limit (in bytes). The

default value of "n" is 4096 bytes.

 Applies only to the slave threads, not master.

 The local stack for slave threads is allocated by the SMP
runtime, hence it is possible to warn the user when stack
overflow is imminent.

 Stack overflow checking can be very useful for figuring
out if stack overflow was the reason an abnormal
termination of the application. The compiler will warn the
users when the remaining stack size is less than “n”
bytes.

© 2007 IBM Corporation31 3/10/08

Blue Gene Workshops

Automatic Parallelization Control Threshold (-qsmp=threshold=n)

 A new SMP feature in V9 / 11.1

 The suboption -qsmp=threshold=n is introduced to control the
amount of automatic loop parallelization that occurs.
– Where 'n' is a positive integer. The default value is 100, which

means parallelize only the profitable auto-parallel loops. 0 implies
parallelize all auto-parallelizable loops whether or not it is
profitable. Values greater than 100 would result in more loops
getting serialized. A large enough value of 'n' could end up
serializing all the loops.

 This sub-option affects only auto parallel loops. User parallel
(OMP/SMP) loops are not affected.
– -qsmp=threshold=n will enable SMP with all the defaults options,

which include auto.

– -qsmp=omp:threshold=n will enable SMP, but the explicit omp will
disable auto and will make threshold have no effect

© 2007 IBM Corporation32 3/10/08

Blue Gene Workshops

Better SIMD reports

 The -qreport option produces a list of high level
transformation performed by the compiler

– Everything from unrolling, loop interchange, SIMD
transformations, etc.

– Also contains transformed “pseudo source”

 All loops considered for SIMDization are reported
– Successful candidates are reported

– If SIMDization was not possible, the reasons that
prevented it are also provided

 Can be used to quickly identify opportunities for
speedup

© 2007 IBM Corporation33 3/10/08

Blue Gene Workshops

Examples of SIMD Messages
 Loop was not SIMD vectorized because it contains

operation which is not suitable for SIMD vectorization.
 Loop was not SIMD vectorized because it contains function

calls.
 Loop was not SIMD vectorized because it is not profitable

to vectorize.
 Loop was not SIMD vectorized because it contains control

flow.
 Loop was not SIMD vectorized because it contains

unsupported vector data types
 Loop was not SIMD vectorized because the floating point

operation is not vectorizable under -qstrict.
 Loop was not SIMD vectorized because it contains volatile

reference

© 2007 IBM Corporation34 3/10/08

Blue Gene Workshops

 Debugging at High Optimization Level (-qoptdebug)
 High level optimizations may transform source such that it

has little resemblance to the original

 The -qoptdebug option is introduced to allow source-level
debug of compiler generated pseudo-C or pseudo-Fortran
–The compiler generates post-optimized pseudo source files

–The debug information in the executable is changed to refer to
these new psuedo sources instead of the original

–This option only has an effect at optimization levels -O3 and
above

 The pseudo code will be dumped to <source file>.o.optdbg.
When the users load their program in a debugger, the
debugger will show the compiler generated pseudo source
code, instead of the original C/C++/Fortran source.

© 2007 IBM Corporation35 3/10/08

Blue Gene Workshops

Example (-qoptdebug)

Breakpoint 1, foo(a=0xffadeb60, b=0x1002b84) at z.o.optdbg:3

3 8 | $.NumElements0 = (long) 100u;

(gdb) list

1 3 | void foo (char * a, char * b)

2 4 | {

3 8 | $.NumElements0 = (long) 100u;

4 __vscos(((char *)a + (4)*(0)),((char *)b + (4)*(0)),&$.NumElements0)

5 10 | return;

6 } /* function */

7

8

9 12 | void main()

10 13 | {

(gdb)

#include <math.h>
void foo (float * restrict a, float * restrict b)
{
 for (int i=0; i < 100; i++)
 a[i] = cos(b[i])
}

void main(void)
{
 float *a, *b;
 foo (a, b);
}

• Program z.c compiled as -O3 -g -qoptdebug, producing new file z.o.optdbg

• Binary loaded into debugger as gdb ./a.out

• Caveats:

 Does not eliminate the well known limitations of debugging optimized code

 Optimizations performed by low level optimizer may continue to inhibit debugging

© 2007 IBM Corporation36 3/10/08

Blue Gene Workshops

MASS Enhancements: BG/L and BG/P
 Mathematical Acceleration SubSystem is a library of highly

tuned, machine specific, mathematical functions available
for download from IBM

– Contains both scalar and vector versions of many (mostly
trig.) functions

– Trades off very limited accuracy for greater speed

– The compiler tries to automatically vectorize scalar math
functions and generate calls to the MASS vector routines in
libxlopt

– Failing that, it tries to inline the scalar MASS routines (new
for this release)

– Failing that, it generates calls to the scalar routines instead
of those in libm

 More info: http://www-306.ibm.com/software/awdtools/mass/bgl/

© 2007 IBM Corporation37 3/10/08

Blue Gene Workshops

MASS Example

subroutine mass_example (a,b)
 real a(100), b(100)
 integer i

 do i = 1, 100
 a(i) = sin(b(i))
 enddo;
end subroutine mass_example

 SUBROUTINE mass_example (a, b)
 @NumElements0 = int(100)
 CALL __vssin (a, b, &@NumElements0)
 RETURN
 END SUBROUTINE mass_example

 -O3 –qhot -qreport

Aliasing prevents vectorization:

void c_example(float *a, float *b)
{
 for (int i=0; i < 100; i++)
 {
 a[i] = sin(b[i]);
 b[i] = (float) i;
 }
}

void c_example(float *a, float *b)
{
 @CIV0 = 0;
 do {
 a[@CIV0] = __xl_sin(b[@CIV0]);
 b[@CIV0] = (float) @CIV0;
 @CIV0 = @CIV0 + 1;
 } while ((unsigned) @CIV0 < 100u);
 return;
}

© 2007 IBM Corporation38 3/10/08

Blue Gene Workshops

Unsupported Options

 BG/L
– -qsmp

– -q64

– -qaltivec

– -qpic

– -qmkshrobj

 BG/P
– -q64

– -qaltivec

© 2007 IBM Corporation39 3/10/08

Blue Gene Workshops

GNU Compiler Collection

 The standard GNU Compiler Collection 4.1.1 for C,
C++, and Fortran is supported on the Blue Gene/P
system:
– gcc 4.1.2

– binutils 2.17

– glibc 2.4

© 2007 IBM Corporation40 3/10/08

Blue Gene Workshops

Linking

 BG/L
– Dynamic linking is not supported; only static linking

 BG/P
– Static and dynamic linking

© 2007 IBM Corporation41 3/10/08

Blue Gene Workshops

Dynamic Linking
 Instead of embedding all of the dependent library

routines into the executable, only a small stub is used
instead. This reduces the size of the file on disk.

 XLC V9 / XLF 11.1 supports dynamic linking on BG/P
–Not available on BG/L
–Default remains static linking on both BG/L and BG/P

 Just add the following option to the compile/link
command:
 C/C++: -qnostaticlink

 Fortran: -Wl,-dy
 Make dynamic libraries by compiling with -qpic and

linking the objects with appropriate GNU linker flags,
same as on LoP

© 2007 IBM Corporation42 3/10/08

Blue Gene Workshops

XL Static Linking Example: BG/L and BG/P
#!/bin/csh

#

Compile with the XL compiler

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -c pi.c

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -c main.c

#

Create library

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ar
rcs libpi.a pi.o

#

Create executable

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -o pi main.o -L. -lpi

© 2007 IBM Corporation43 3/10/08

Blue Gene Workshops

GNU Static Linking Example: BG/L and BG/P

#!/bin/csh

#

Compile with the GNU compiler

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -c pi.c

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -c main.c

#

Create library

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ar rcs libpi.a pi.o

#

Create executable

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -o pi main.o -L. -lpi

© 2007 IBM Corporation44 3/10/08

Blue Gene Workshops

XL Dynamic Linking Example: BG/P
#!/bin/csh

#

Use XL to create shared library

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -qpic -c libpi.c

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -qpic -c main.c

#

Create shared library

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -shared \

 -Wl,-soname,libpi.so.0 -o libpi.so.0.0 libpi.o -lc

#

Set up the soname

ln -sf libpi.so.0.0 libpi.so.0

#

Create a linker name

ln -sf libpi.so.0 libpi.so

#

Create executable

/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -o pi main.o -L. -lpi -qnostaticlink

© 2007 IBM Corporation45 3/10/08

Blue Gene Workshops

GNU Dynamic Linking Example: BG/P
#!/bin/csh

#

Compile with the GNU compiler

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -fPIC -c libpi.c

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -fPIC -c main.c

#

Create shared library

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -shared \

 -Wl,-soname,libpi.so.0 -o libpi.so.0.0 libpi.o -lc

#

Set up the soname

ln -sf libpi.so.0.0 libpi.so.0

#

Create a linker name

ln -sf libpi.so.0 libpi.so

#

Create executable

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -o pi main.o -L. -lpi -dynamic

© 2007 IBM Corporation46 3/10/08

Blue Gene Workshops

Static and Dynamic Libraries

© 2007 IBM Corporation47 3/10/08

Blue Gene Workshops

Compilation and Run Environments
 Front-End Node for Compilation:

– BG/L:
SUSE Linux Enterprise Server 9 Service Pack 3 (SLES9 SP3)
for IBM POWER

GCC 3.3.3
– BG/P:

SUSE Linux Enterprise Server 10 Service Pack 1 (SLES10 SP1)
for IBM POWER

GCC 4.1.2
 Application Execution

• BG/L: GNU Toolchain built for Blue Gene/L based on gcc 3.4.3
and glibc 2.3.6

• BG/P: GNU Toolchain built for Blue Gene/P based on gcc 4.1.2
and glibc 2.4

© 2007 IBM Corporation48 3/10/08

Blue Gene Workshops

BlueGene specific predefined macros
 Aim to predefine same macros as the

corresponding gcc toolchain for compatibility.

 To distinguish BGL vs BGP:

__bg__ predefined on BGL/BGP
__bgp__ predefined on BGP
__blrts__ predefined on BGL

 Complete list documented in “Using the XL
compilers for BlueGene”

© 2007 IBM Corporation49 3/10/08

Blue Gene Workshops

BG/P Headers files in /bgsys/drivers/ppcfloor/comm/include

Location: /bgsys/drivers/ppcfloor/comm/include

© 2007 IBM Corporation50 3/10/08

Blue Gene Workshops

Headers Files in /bgsys/drivers/ppcfloor/arch/include/common

Location: /bgsys/drivers/ppcfloor/arch/include/common

© 2007 IBM Corporation51 3/10/08

Blue Gene Workshops

32-bit static and dynamic libraries in
/bgsys/drivers/ppcfloor/comm/lib/

Location: /bgsys/drivers/ppcfloor/comm/lib

© 2007 IBM Corporation52 3/10/08

Blue Gene Workshops

System Calls Supported by the Compute Node Kernel

 System calls supported on BG/L
– IBM System Blue Gene Solution: Application

Development: SG24-7179, Chapter 3

– http://www.redbooks.ibm.com/redbooks/SG247179/

 System calls supported on BG/P
– IBM System Blue Gene Solution: Blue Gene/P

Application Development: SG24-7287

– http://www.redbooks.ibm.com/redbooks/SG247287/

© 2007 IBM Corporation53 3/10/08

Blue Gene Workshops

References: http://www.redbooks.ibm.com/redbooks
 IBM System Blue Gene Solution: Blue Gene/P Application Development ,

SG24-7287
 Blue Gene Safety Considerations, REDP-4257
 Blue Gene/L: Hardware Overview and Planning, SG24-6796
 Blue Gene/L: Performance Analysis Tools, SG24-7278
 Evolution of the IBM System Blue Gene Solution, REDP-4247 GPFS
 Multicluster with the IBM System Blue Gene Solution and eHPS Clusters,

REDP-4168
 IBM System Blue Gene Solution: Application Development, SG24-7179
 IBM System Blue Gene Solution: Configuring and Maintaining Your

Environment, SG24-7352
 IBM System Blue Gene Solution: Hardware Installation and Serviceability,

SG24-6743
 IBM System Blue Gene Solution Problem Determination Guide, SG24-7211
 IBM System Blue Gene Solution: System Administration, SG24-7178
 Unfolding the IBM eServer Blue Gene Solution, SG24-6686
 Blue Gene/P System and Optimization Tips*
 Recommendations for Porting Open Source Software (OSS) to Blue Gene/P*

© 2007 IBM Corporation54 3/10/08

Blue Gene Workshops

Additional Information

© 2007 IBM Corporation55 3/10/08

Blue Gene Workshops

Debugging Applications on BG/P

 Four pieces of code are involved when debugging
applications on the Blue Gene/P system:
– The Compute Node Kernel, which provides the low-level

primitives that are necessary to debug an application

– The control and I/O daemon (CIOD) running on the I/O
Nodes, which provides control and communications to
Compute Nodes

– A "debug server" running on the I/O Nodes, which is
vendor-supplied code that interfaces with the CIOD

– A debug client running on a Front End Node, which is
where the user does their work interactively

© 2007 IBM Corporation56 3/10/08

Blue Gene Workshops

GNU Project Debugger

 More info:
– http://www.gnu.org/software/gdb/gdb.html

http://www.gnu.org/software/gdb/documentation/

 Support has been added to the Blue Gene/P system for which the
GDB can work with applications that run on Compute Nodes

 IBM provides a simple debug server called gdbserver
 Each running instance of GDB is associated with one, and only

one, Compute Node
 If you must debug an MPI application that runs on multiple

Compute Nodes, and you must, for example, view variables that are
associated with more than one instance of the application, you run
multiple instances of GDB.

© 2007 IBM Corporation57 3/10/08

Blue Gene Workshops

Core Processor Debugger

 Core Processor is a basic tool that can help you
debug your application

 This tool is discussed in detail in IBM System Blue
Gene Solution: Blue Gene/P System
Administration, SG24-7417

© 2007 IBM Corporation58 3/10/08

Blue Gene Workshops

 The addr2line utility is a standard Linux program

 You can find additional information about this
utility in any Linux manual as well as at the
following Web site:
– http://www.linuxcommand.org/man_pages/addr2line1.htm

l

 The addr2line utility translates an address into file
names and line numbers

addr2line Utility

